0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 CpxWeightedTrsRenamingProof (BOTH BOUNDS(ID, ID), 8 ms)
↳4 CpxWeightedTrs
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxTypedWeightedTrs
↳7 CompletionProof (UPPER BOUND(ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳10 CpxTypedWeightedCompleteTrs
↳11 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 494 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 206 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 4 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 247 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 73 ms)
↳26 CpxRNTS
↳27 FinalProof (⇔, 0 ms)
↳28 BOUNDS(1, n^1)
double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
double(x) → +(x, x)
double(0) → 0 [1]
double(s(x)) → s(s(double(x))) [1]
+(x, 0) → x [1]
+(x, s(y)) → s(+(x, y)) [1]
+(s(x), y) → s(+(x, y)) [1]
double(x) → +(x, x) [1]
+ => plus |
double(0) → 0 [1]
double(s(x)) → s(s(double(x))) [1]
plus(x, 0) → x [1]
plus(x, s(y)) → s(plus(x, y)) [1]
plus(s(x), y) → s(plus(x, y)) [1]
double(x) → plus(x, x) [1]
double(0) → 0 [1]
double(s(x)) → s(s(double(x))) [1]
plus(x, 0) → x [1]
plus(x, s(y)) → s(plus(x, y)) [1]
plus(s(x), y) → s(plus(x, y)) [1]
double(x) → plus(x, x) [1]
double :: 0:s → 0:s 0 :: 0:s s :: 0:s → 0:s plus :: 0:s → 0:s → 0:s |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
double
plus
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
double(z) -{ 1 }→ plus(x, x) :|: x >= 0, z = x
double(z) -{ 1 }→ 0 :|: z = 0
double(z) -{ 1 }→ 1 + (1 + double(x)) :|: x >= 0, z = 1 + x
plus(z, z') -{ 1 }→ x :|: x >= 0, z = x, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = x
plus(z, z') -{ 1 }→ 1 + plus(x, y) :|: x >= 0, y >= 0, z = 1 + x, z' = y
double(z) -{ 1 }→ plus(z, z) :|: z >= 0
double(z) -{ 1 }→ 0 :|: z = 0
double(z) -{ 1 }→ 1 + (1 + double(z - 1)) :|: z - 1 >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0
plus(z, z') -{ 1 }→ 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0
{ plus } { double } |
double(z) -{ 1 }→ plus(z, z) :|: z >= 0
double(z) -{ 1 }→ 0 :|: z = 0
double(z) -{ 1 }→ 1 + (1 + double(z - 1)) :|: z - 1 >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0
plus(z, z') -{ 1 }→ 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0
double(z) -{ 1 }→ plus(z, z) :|: z >= 0
double(z) -{ 1 }→ 0 :|: z = 0
double(z) -{ 1 }→ 1 + (1 + double(z - 1)) :|: z - 1 >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0
plus(z, z') -{ 1 }→ 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0
plus: runtime: ?, size: O(n1) [z + z'] |
double(z) -{ 1 }→ plus(z, z) :|: z >= 0
double(z) -{ 1 }→ 0 :|: z = 0
double(z) -{ 1 }→ 1 + (1 + double(z - 1)) :|: z - 1 >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0
plus(z, z') -{ 1 }→ 1 + plus(z - 1, z') :|: z - 1 >= 0, z' >= 0
plus: runtime: O(n1) [1 + z + z'], size: O(n1) [z + z'] |
double(z) -{ 2 + 2·z }→ s'' :|: s'' >= 0, s'' <= 1 * z + 1 * z, z >= 0
double(z) -{ 1 }→ 0 :|: z = 0
double(z) -{ 1 }→ 1 + (1 + double(z - 1)) :|: z - 1 >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z + z' }→ 1 + s :|: s >= 0, s <= 1 * z + 1 * (z' - 1), z >= 0, z' - 1 >= 0
plus(z, z') -{ 1 + z + z' }→ 1 + s' :|: s' >= 0, s' <= 1 * (z - 1) + 1 * z', z - 1 >= 0, z' >= 0
plus: runtime: O(n1) [1 + z + z'], size: O(n1) [z + z'] |
double(z) -{ 2 + 2·z }→ s'' :|: s'' >= 0, s'' <= 1 * z + 1 * z, z >= 0
double(z) -{ 1 }→ 0 :|: z = 0
double(z) -{ 1 }→ 1 + (1 + double(z - 1)) :|: z - 1 >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z + z' }→ 1 + s :|: s >= 0, s <= 1 * z + 1 * (z' - 1), z >= 0, z' - 1 >= 0
plus(z, z') -{ 1 + z + z' }→ 1 + s' :|: s' >= 0, s' <= 1 * (z - 1) + 1 * z', z - 1 >= 0, z' >= 0
plus: runtime: O(n1) [1 + z + z'], size: O(n1) [z + z'] double: runtime: ?, size: O(n1) [2·z] |
double(z) -{ 2 + 2·z }→ s'' :|: s'' >= 0, s'' <= 1 * z + 1 * z, z >= 0
double(z) -{ 1 }→ 0 :|: z = 0
double(z) -{ 1 }→ 1 + (1 + double(z - 1)) :|: z - 1 >= 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z + z' }→ 1 + s :|: s >= 0, s <= 1 * z + 1 * (z' - 1), z >= 0, z' - 1 >= 0
plus(z, z') -{ 1 + z + z' }→ 1 + s' :|: s' >= 0, s' <= 1 * (z - 1) + 1 * z', z - 1 >= 0, z' >= 0
plus: runtime: O(n1) [1 + z + z'], size: O(n1) [z + z'] double: runtime: O(n1) [2 + 2·z], size: O(n1) [2·z] |